Time: As in Programme

Full Marks: 70

The questions are of equal value.

Answer all questions.

- 1. (a) Differentiate between buffering and spooling.
 - (b) Explain how I/O protection is provided by Operating System.

OR

Operating System is interrupt-driven. Discuss and justify.

- (a) Distinguish amongst short-term, long-term and medium-term scheduling.
 - (b) Illustrate the execution of processes in the following table using Round-Robin CPU scheduling algorithm, with a time quantum of 2:

Process	ΑI	Burst Time	
Α	0	8	
В	1	4	-2
С	2	9	
D	3	5	
E	4	7	

Calculate their TAT and WT.

OR

- (a) What are Cooperating Processes? Explain through the bounded-buffer problem.
- (b) Illustrate the execution of processes in the table below using SJF CPU scheduling algorithm:

Process	AT .	Burst Time
Α	0	6
В	1	3
C	3	2
D ·	6	7
E	7	5
·		

Calculate their TAT and WT.

HB – 7/5

(2)

Contd.

- (a) Write and explain the algorithm for twoprocess solution to critical-section problem.
 - . (b) Write safety algorithm used in deadlock avoidance. Using the same find the minimum number of resources needed for the following state to be safe:

Process	Current	Maximum	
	Allocation	Allocation	
\mathbf{A}^{\cdot}	1	3	
a B	1 .	2	
С	3	9	
D	2	7	

- (a) What is system deadlock? Explain the deadlock prevention mechanism.
- (b) Write the deadlock detection algorithm. Using the same check if deadlock has occured in the following state:

Process	Allocation			Re	que	est
	R ₁	R_2	R_3	R_1	R ₂	R_3
Α	0	1	0	0	0	0

HB - 7/5

(3)

(Tum over)

Time: As in Programme

Full Marks: 70

The figures in the right-hand margin indicate marks.

Answer all questions.

- (a) What is a data model? Discuss the various types of data models that are in use with their advantages and disadvantages.
 - (b) What is data independence? Discuss various forms of data independence with example.

OR

 (a) Discuss why navigation is simpler in Relational data model than the Hierarchical data model.

- (b) Explain the difference between the Fileoriented and a Database-oriented system. 7
- (a) What problems are caused by data redundancies? Can data redundancies be completely eliminated when database approach is used? Explain.
 - (b) Explain why first normal form is acceptable for data processing applications.7

Consider the following relational database:

EMP (E-no, E-name, Skill, Pay-rate)

Position (Posting-No, Skill)

Duty-Allocation (Posting-No, E-no, Shift)

Write relational algebraic expression for the following:

- (a) Find the names of employees who are assigned to all positions that require a clerk's skill.
- (b) Find the names and rate of pay of all employees who are not allocated a duty.
- (c) Find the names and skills of the employee who worked in night shift.

HB = 8/6 (2) Contd.

3.	(a)	List all functional dependencies satisfied	l by
		the following relation:	10

A	В	С	D
a ₁	b ₁	c ₁	d_1
a_2	b_2	c_2	d_2
a ₂	b_3	c_2	d_3
аз	b_3	c_2	d_{4}

(b) Discuss the various data dependency with example.

OR

- (a) Using algorithm clouser find A^+ given that $F = \{A \rightarrow B. B \rightarrow C, BC \rightarrow D, DA \rightarrow B\}$. 7
- (b) Given R = (A, B, C, D, E) and $F = \{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}$, compute F^{+} .
- (a) Find a non-redundant cover G for the set
 F = { X → YZ, ZW → P, P → Z, W → XPQ,
 XYQ → YW, WQ → YZ}.
 - (b) Remove redundant FD's from F = { X → Y, Y → X, Y → Z, Z → Y, X → Z, Z → X } using membership algorithm.

OR

HB-8/6 (3) (Turn over)

- (a) Reduce the set F = { X → YW, XW → Z,
 Z → Y, XY → Z} by removing left extraneous attribute.
- (b) Show that $F = XY \rightarrow Q$ where $F = \{XY \rightarrow W, Y \rightarrow Z, WZ \rightarrow P, WP \rightarrow QR, Q \rightarrow X\}.$ 7
- 5. Consider r(A, B, C, D, E) and $F = \{AB \rightarrow CE, E \rightarrow AB, C \rightarrow D\}$:
 - (a) Determine all possible keys of the relation.
 - '(b) What is the highest normal form of this relation?
 - (c) Put the relation in highest normal form.

- (a) Explain time stamp based protocol. 7
- (b) Explain shadow paging. 7

Time: As in Programme

Full Marks: 70

The figures in the right-hand margin indicate marks.

Answer all questions.

 (a) What is a single chip microprocessor? With a suitable diagram of a single chip microprocessor, explain each component.

10

(b) What are the different types of memory used in microprocessor?

- (a) Define a microcomputer. Draw a neat and labelled block diagram of a microcomputer and explain each component.
- (b) Define and differentiate programmed I/O from Interrupt I/O.

2	(2)	Explain the register structure of 80
۷.	(a)	microprocessor using a suitable diagram.
		8
	(b)	Explain the addressing modes of 8085
	-	microprocessor with suitable examples. 6

- (a) Define a subroutine. Explain the subroutine call with an example. How it differs from macro?
- (b) What do you mean by assembler? Explain the one pass, two-pass, resident and cross assembler.
- (a) Write an assembly language program for 8085 microprocessor to find the sum of a series of 8-bit numbers and sum is 16-bit.
 - (b) Write an assembly language program for 808 microprocessor to find the smallest number in a data array which contains 20 numbers.

7

OR

HB - 9/3 (2) Contd.

(a)	Write an assembly language program for
	8085 microprocessor to find decimal
	addition of two 8-bit numbers and sum is 16-
	bit. 7
(b)	Write an assembly language program for
	8085 microprocessor to perform 8-bit

- decimal subtraction. 7
- What is DMA? How it works in 8085 4. microprocessor. Define cycle stealing and burst mode of DMA. Write down the advantages as well 14 as disadvantages of DMA.

- Explain different types of data transfer schemes in detail? 10
- Differentiate memory-mapped I/O from I/O mapped I/O. 4
- 5. (a) Define 8086 Microprocessor? Draw a neat and labelled 8086 microprocessor architecture diagram. Discuss BIU part in 10 detail.

HB = 9/3

(b) Explain mode of operation of 8086 microprocessor.

- (a) Explain the register structure of 8086microprocessor with a diagram.
- (b) Convert an analog voltage of 4.41 volts into its digital form of 7-bits by using reference voltage of 6 volts.

Time: As in Programme

Full Marks: 70

The figures in the right-hand margin indicate marks.

Answer all questions.

- (a) Distinguish between the following:
 5

 (i) Image Processing and Computer
 - Graphics
 - (ii) Vector Display and Raster Display
 - (b) Develop the Mid-point Line algorithm. 9

- (c) Explain how colored display is obtained in shadow-mask CRT. 6
- (b) Develop the Cohen-Sutherland line clipping algorithm.

2.	(a)	Given a unit cube with one corner at	
		and the opposite corner at (1,1,1), de	rive the
		transformation required to align the	e main
		diagonal (from (0,0,0) to (1,1,1))	to the
		positive z-axis.	8
	(b)	Prove that two successive 2D rotation	ons are
		additive : $R(\theta_1)$. $R(\theta_2) = R(\theta_1 + \theta_2)$.	6
		OR	
	(c)	Derive the 4X4 matrix to repr	resent
		perspective projection of a point P(x, y,	z) onto
		the projection plane at $z = d$.	5
	(d)	Explain with the help of diagrams:	
		(i) Isometric Projection	- 3
		(ii) Cabinet Projection	3
	•	(iii) One-point Perspective Projection	n 3
3.	(a)	Obtain an expression for the Hermite	e curve
		based on cubic polynomials.	10
	(b)	How do the Hermite curves differ fr	om the
		Bezier Curves ?	4
		OR	•
нв	_ 10)/2 (2)	Contd.

(c)	Describe how the Lindenmayer's grammar				
•	language is used to generate plantlike				
	structures. 8				
(d)	Discuss how fractal mountains can be				
	generated basing on recursive subdivision				
	of triangles. 6				
(a)	Explain the following terms: 6				
	(i) Wire-frame model				
	(ii) Dynamic image				
	(iii) Stereopsis				
(b)	Describe an area subdivision algorithm for				
	determining visible surfaces. 8				
OR					
(c)	Differentiate between image-precision and				
	object precision algorithms for visible				
	surface determination. 5				
(d)	Describe the z-buffer algorithm for				
	determining visible surfaces. 9				
(a)	Describe the gamma correction method for				
	determining the controlarid voltage in the				

HB - 10/2

5.

(3)

(Turn over)

CRT	to generate the desired inter	nsity	for a	a `
pixel.	os	•	7	7

(b) Explain what is meant by Halftone approximation.

- (c) Describe the HSV color model. 7
- (d) Differentiate between Diffuse Reflection and Specular Reflection. Describe the Phong illumination model for specular reflection from nonperfect reflectors. 7

Time: As in Programme

Full Marks: 70

The questions are of equal value.

Answer any five questions.

- What is Management? Why it is essential in an Organisation? Describe the functions of management.
- Establish the relationship between people, organisation and management in the context of importance of management.
- 3. What is Organisation Structure ? Why it is required for an organisation ?
- 4. What do you mean by a matrix structure? How it is advantageous?

- What is Organizational Behaviour? Describe its importance in the context of management.
- Organizational Behaviour is a multi disciplinary subject. Describe.
- What is Perception? Describe the perceptual process and the factors influencing perception.
- 8. What is personality? Describe the determinants of personality. What type of personality you recommend for an organisation?
- What do you mean by Motivation? Describe the Need Hierarchy Theory of Motivation.
- 10. What is Leadership? Why it is required for an organisation? Justify whether today's organisation needs managers or leaders.

